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Motivation

Differential equations (DE) in
models are based on an
understanding of the governing
dynamics of the physical
systems

Approximate the dynamics

e.g., reaction diffusion for the
spread of avian species (Wikle,
2003; Hooten and Wikle, 2008)
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Spread of Eurasian Collared-Dove across
the United States (Hooten and Wikle,
2008).
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Motivation

Modeling physical processes using DE, while generally sufficient at
capturing system dynamics, suffer in that they are only an
approximation of the true physical process (Holmes et al., 1994)
Instead of modeling the process using DE, we want to discover the
governing equation(s) that define dynamic system

dx

dt
= σ · (y − x)

dy

dt
= x · (ρ− z)− y

dz

dt
= xy − βz

North, Schliep, Wikle (Mizzou) Data-Driven Discovery JSM 2021



What Has Been Done

Originally Bongard and Lipson (2007); Schmidt and Lipson (2009)
using symbolic regression

Able to discover dynamics
Symbolic regression is computationally expensive

Brunton et al. (2016) shift the focus of dynamic system discovery to
sparse identification, proposing Sparse Identification of Nonlinear
Dynamics (SINDy)

SINDy involves three major steps: (1) numerical differentiation and
denoising, (2) determining the candidate functions, termed the “feature
library”, and (3) sparse regression
Extensions include PDEs (Rudy et al., 2017, 2019), stochastic
processes (Boninsegna et al., 2018), numerical improvement (Schaeffer,
2017; Schaeffer et al., 2018; Lagergren et al., 2020), and improved
uncertainty quantification (Zhang and Lin, 2018; Niven et al., 2020)
Developed into a Python package (pysindy; de Silva et al., 2020)
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Our Approach

Bayesian hierarchical modeling (BHM) approach to data-driven
discovery of dynamic equations

Compartmentalize uncertainty
Incorporate process dependence
Borrow dependence across processes

Compute derivatives analytically through a basis expansion

Make inference on the derivative when only the process is observed
Forces the latent process to be smooth

Feature library

Impart system dynamics

Missing/imperfect data

BHM allows for complete latent space
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Dynamic System

Consider the dynamic system

d

dt
xt =

.
xt = M(xt), (1)

where the vector xt ∈ Rn denotes the realization of the system at time
t = 1, ...,T , and the function M(·) represents the, potentially nonlinear,
evolution function.

Reparameterizing Eqn. 1, and accounting for potential stochastic forcing,

.
xt = Mf(xt) + ηt , (2)

where M is a n × p sparse matrix of coefficients, f(·) : Rn → Rp is a
vector-valued nonlinear transformation function, and ηt ∼ N(0,Q) is a
mean zero Gaussian process.
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Dynamic System

In general, only the process X = {xt}t=1,...,T is observed and measured.
To make inference on the derivative of the process, we decompose our
observed system using temporal basis functions, and use the basis
functions to analytically obtain the derivatives. Let X′ = ΦA and.
X

′
=

.
ΦA, where Φ and

.
Φ are T × pa matrices of the basis functions and

derivative of the basis functions, respectively, and A is a pa × n matrix of
basis coefficients. This results in the process equations,

A′ .φ
′
t = Mf(A′φ′

t) + ηt ,

where M and f(·) are the same as in Eqn. 2, but now ηt accounts for
basis truncation error and stochastic forcing.
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Dynamic Model

For time points t = 1, ...,T , our general model is

yt = HtA
′φ′

t + εt

A′ .φ
′
t = Mf(A′φ′

t) + ηt

(3)

yt ∈ Rm is the observed process

Ht is the m × n matrix mapping the latent to observed process

A′φ′
t = xt ∈ Rn is the latent observation vector

f(·) : Rn → Rp is the nonlinear function, n << p,

M is the n × p coefficient matrix

εt ∼ Nm(0,R) is the measurement error

ηt ∼ Nn(0,Q) is the process error
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Parameter Specification

R = diag(σ2r1 , ..., σ
2
rm), with σ2r1 , ..., σ

2
rm ∼ Half-t(2, 1e5) (Huang and

Wand, 2013)

Non-informative prior
Assumes measurement noise is independent

Q ∼ matrix Half-t(2, 1e5)

Non-informative prior
Accounts for process dependence structure

M SSVS (George et al., 1993)

Inclusion probability
Variable selection

A Elastic Net (Li and Lin, 2010)

Coefficient shrinkage
Stochastic gradient
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Importance of Basis Expansion

yt = Htxt + εt
.
xt = Mf(xt) + ηt

yt = HtA
′φ′

t + εt

A′ .φ
′
t = Mf(A′φ′

t) + ηt

Approximate
.
xt (e.g., finite

difference)

Update [
.
xt |·] and [xt |·]

Potentially very complex
Dependence between [

.
xt |·]

and [xt |·]
Costly update step O(T )

Analytic derivative φt →
.
φt

Update [A|·]
Stochastic gradient descent
(Mandt et al., 2016)
Automatic differentiation
Estimates derivative and
system jointly
O(N) update step, N << T
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Simulations and Examples

Simulations - 4th-order Runge-Kutta

1 Lotka-Volterra System (∆t = 0.05, t = 0, ..., 50) - no noise,
measurement noise

2 Lorenz-63 Attractor (∆t = 0.01, t = 0, ..., 10) - no noise,
measurement noise, missing data

Examples

1 Hare-Lynx Predator Prey - Hudson Bay Company circa 1845-1935
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Lotka-Volterra System

dx/dt = αx − βxy
dy/dt = δxy − γy

⇒

α = 1.1
β = 0.4
δ = 0.1
γ = 0.4

⇒ Xt = [xt , yt ] no noise

Zt = Xt + N(0, 0.5I2) noise

Figure: Data simulated from Lotka Volterra system without noise (Xt , blue) and
with measurement noise (Zt , red).
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Lotka-Volterra System

System Truth

dx/dt 1.1x − 0.4xy
dy/dt −0.4y + 0.1xy

Table: True solution with correct parameter values.

System X Z
dx/dt 1.105x − 0.454xy −0.269 + 1.317x − 0.392xy + 0.033yy
dy/dt −0.4y + 0.113xy 0.13− 0.482y + 0.151xy

Table: Recovered equations for the Lotka-Volterra simulation for data simulated
with no noise (X, left) and with measurement noise (Z, right). All parameter
values are the point-wise posterior mean estimates and rounded to three
significant figures. Library included polynomials up to the third order, all possible
interactions, and an intercept.
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Lorenz-63 Attractor

dx/dt = σ · (y − x)

dy/dt = x · (ρ− z)− y

dz/dt = xy − βz
⇒

σ = 10
ρ = 28
β = 8/3

⇒
Xt = [xt , yt , zy ] no noise

Zt = Xt + N(0, I3) noise

Figure: Data simulated from Lorenz-63 without noise (Xt , blue) and with
measurement noise (Zt , red).
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Lorenz-63 Attractor

Randomly remove 5% of data from each system ⇒ ZMt

Figure: Data simulated from Lorenz-63 with measurement noise and missing data
(ZMt , red). The blue lines are to help show where there is missing data.

North, Schliep, Wikle (Mizzou) Data-Driven Discovery JSM 2021



Lorenz-63 Attractor

System Truth X
dx/dt −10x + 10y −9.999x + 10y
dy/dt 28x − 1y − 1xz 27.997x − 0.998y − 1xz
dz/dt −2.667z + 1xy −2.667z + 1xy

(a) True solution (left) and recovered solution for data simulated with no noise (X,
right).

System Z ZM
dx/dt = −8.892x + 9.381y −9.103x + 9.697y
dy/dt = 26.571x − 0.883xz − 0.086yz 24.078x − 0.816xz
dz/dt = −2.67z + 0.99xy −2.585z + 0.963xy

(b) Recovered solutions for data simulated with measurement noise (Z, left) and with
measurement noise and missing data (ZM, right).

Table: Recovered equations for the Lorenz-63 simulations. All parameter values are the
point-wise posterior mean estimates and rounded to three significant figures. Library
included polynomials up to the third order, all possible interactions, and an intercept.
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Hare-Lynx Predator Prey

Figure: Canadian Lynx and Snowshoe Hare data set1

System

dH/dt 1.373 + 2.326H − 0.667L− 0.086HL
dL/dt −0.75− 5.452L + 0.154HL

Table: Recovered parameters from the Hare-Lynx System. Library included polynomials
up to the third order, all possible interactions, and an intercept.

1https://tuvalabs.com/datasets/lynx and snowshoe hare in canada/activities
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